Liquid Crystal Polymer (LCP) for MEMS Applications

Xuefeng Wang, Jonathan Engel, and Chang Liu

Micro Actuators, Sensors, and Systems Group (MASS)
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
LCP Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>LCP (Vectra A-950)</th>
<th>Kapton (HN100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Temperature</td>
<td>280 °C</td>
<td>>400 °C</td>
</tr>
<tr>
<td>Glass Transition Temp</td>
<td>145 °C</td>
<td>360-410 °C</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>2.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Loss Factor, tanδ</td>
<td>~0.004</td>
<td>~0.002</td>
</tr>
<tr>
<td>Moisture Absorption</td>
<td><0.02%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>0-30 ppm/°C</td>
<td>20 ppm/°C</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>27 ksi</td>
<td>34 ksi</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>1500 ksi</td>
<td>370 ksi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.4</td>
<td>1.42</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>>20,000</td>
<td>-</td>
</tr>
</tbody>
</table>

- Low substrate cost ($20/sq ft, 50%-80% lower than Kapton)
- Low melting point enables low temperature processing
- Low permeability to moisture and gases
- Excellent electric isolation to high frequencies
- Dielectric strength 550 V/mil
- Mechanical flexibility

Comparison of physical, mechanical, thermal, and electrical properties of LCP and Kapton
Micro Machining Technology

• Traditional LCP machining: excimer laser drilling
 – feature size > 25 µm
• Injection molding
 – limited by mold making process
• MEMS applications: micro machining
 – photolithography and metallization
 • standard IC fabrication process
 – oxygen plasma etching
 • etching rate 0.22~0.27 µm/min
 – thermal lamination
 • LCP can be bonded on glass, Cu, Au, silicon, or another LCP
 • lamination temperature 260~270 ºC
 • bonding time < 2 min
Surface Topology

LCP:
- **Rq=258nm and 459nm**
- **Rt~4 μm**

Kapton:
- **Rq=197nm and 243nm**
- **Rt~3 μm**

Si Wafer:
- **Rq=20nm**
- **Rt~200nm**

Free Surface
Vertical scanning optical interferometric surface topology data for LCP (Vectra A-950) and Kapton (HN100) Films

Roller Surface
Bonding Strength (Blister Test)

- Bonding at 260-270°C, moderate pressure
- LCP-glass bonding withstood 28 psi (193 kPa) pressure difference
- Bonding energy > 46 J/m²
Microfluidic Channel Fabrication I

Fluid channel in glass

- Deposition and patterning Au/Cr mask on glass

- Wet etch glass channel with 49% HF (70 µm)

- Removal of mask in metal etchants

- Thermal bonding LCP to glass
Microfluidic Channel Fabrication II

Fluid channel in LCP

- Deposition and patterning Al on LCP
- Dry etching fluid channels by oxygen plasma (350W @ 500mT)
- Removal of Al mask and thermal bonding LCP to glass
SEM micrograph shows the cross-section of channel in an LCP film bonded to glass substrate.

LCP-LCP bonding can form flexible 3D multi-layer fluid circuits.

Cross-sectional view of the LCP channel
Microfluid CE Experiment Setup

- Glass channel (70 μm deep) sealed with bonded LCP film
- Via holes drilled in LCP by mechanical punching
- Plastic inlet and outlet pipes bonded to LCP film with epoxy
- Platinum wires inserted as electrodes
- Voltage applied across electrodes

Schematic illustration of a capillary electrophoresis experiment setup
CE Operation

- Fluid circuit: channel with double T section
- Buffer solution: TBE 10X
- Fluorescent marker: polystyrene beads Fluosphere® (Molecular Probe)

Flow channel under epi-fluorescence microscope
CE Operation

Glass-LCP microchip under Argon laser excitation

Experiment shows the speed of fluorescent beads varies from 36~60 µm/s at 50 V/cm
Flow Sensor Fabrication

- Deposition and patterning NiCr strain gauges on LCP (Vectra A-950)

- Deposition and patterning of Au/Cr wiring

- Physical cutting of LCP to form sensor beam and bonding to glass carrier
Flow Sensor Operation

- Testing in wind tunnel
- Flow (v) directed normal to flat area of sensor beam

![Diagram showing flow sensor operation and resistance change graph.](image)

- Resistance change (PPM) vs. Flow Rate, v (m/s)
- Sensor Beam
- Strain Gauge

3000 µm
Tactile Sensor Fabrication

- Double-sided alignment, deposition and patterning of NiCr Strain gauges and Al mask on 2mil (50µm) thick LCP

- Dry etching (O2 plasma) of 35µm deep, 500µm square backside cavity, remove Al

- Deposition and patterning of Au interconnects

- Spin and pattern 20µm tall polyimide tactile bumps
Tactile Sensor Operation

- Converts normal applied load into change in resistance
- Array can image tactile contact
- Similar fabrication techniques can provide shear data
Tactile Sensor Experimental Setup

- Micromanipulator and linearly variable differential transformer (LVDT) displacement gauge are used to deflect (d) membrane
- Multimeter reads direct change in resistance
- Linear response over designed 20µm range, with 0.86 Ω/µm sensitivity
LCP for MEMS packaging

- Copper-LCP laminates for flexible circuit boards
- LCP thermal bonding for environmental encapsulation
- LCP substrates for robust devices

15mm
Acknowledgements

Funding
- DARPA RECAP program
- NSF SensitiveSkin program
- AFOSR Bioinspired Concept program

Special Thanks
- Brian Farrell at Foster Miller for helpful discussions and providing us with small quantity samples at early stage of this work
- Len Chorosinski at Northrop Grumman for introducing this material to us
Questions

For further questions or discussion, contact:

Jonathan Engel
jmengel@uiuc.edu
+1-217-265-0808